Join Newsletter
Trusted Business Advisors, Expert Technology Analysts

Research Areas


Includes iSCSI, Fibre Channel or FC, InfiniBand or IB, SMI-S, RDMA over IP, FCoE, CEE, SAS, SCSI, NPIV, SSD.

All technologies relating to storage and servers are covered in this section. Taneja Group analysts have deep technology and business backgrounds and several have participated in the development of several of these technologies. We take pride in explaining complex technologies in a simple enough manner for IT, the press community and the industry at large to understand.

Page 1 of 44 pages  1 2 3 >  Last ›
Free Reports

Abstract: Taneja Group Multi-Client Study on Storage Acceleration and Performance Technologies

Storage performance technology – solid state or high-scale storage designed for high performance – has long been a tricky and fragmented market. While the market for flash-based storage has been growing steadily over the past few years, it still represents well under 10% of total installed capacity in the enterprise. A variety of storage acceleration solutions—based in the array, server and network—are now available, and yet many enterprise buyers are still poorly educated about these options and how best to address the performance needs of their business-critical apps.

Taneja Group’s latest multi-client sponsored research study addresses the relatively young and rapidly evolving market for storage acceleration and performance solutions in the enterprise. This study provides vendor sponsors with key insights into the current uptake and usage of storage acceleration and performance technologies, along with user-perceived value of key features and capabilities. The study findings will help vendors understand how to overcome sales and deployment barriers, improve and sharpen the positioning of their products/solutions, and determine where they should invest going forward, based on the technologies and use cases that will be most important to enterprise buyers over the next 2-3 years.

The 70-page research report features results from 694 completed online surveys, plus in-depth discussions with 9 selected enterprise participants. The study respondents – primarily senior IT and infrastructure managers – come from a broad range of enterprise-level organizations and industries, providing a highly representative sample of customers in the sweet spot for storage acceleration solutions.

The report begins with a description of the market landscape, which provides our perspectives on how the storage performance market has developed and where it is headed. This leads into an in-depth analysis and discussion of survey findings, including a profile of the respondents themselves. We then identify and explore several key customer populations that rose to the surface in our analysis. Understanding these different types of buyers and users is more important than ever, as we find that the market is quite fragmented, with a number of contrasting populations looking at performance from distinctly different perspectives. By studying these populations and what makes them tick, vendors will be able to assess and optimize product and marketing strategies for different classes of customers, while honing their competitive differentiation.

This Taneja Group research report was provided to our primary research sponsors in early September 2015, and is now generally available for purchase by other vendors. If you have an interest in learning more about the market and how you can make your acceleration offerings stand out, please contact Jeff Byrne ( or Mike Matchett ( at Taneja Group to put the insights in this report to work for you.

Publish date: 10/01/15

Enterprise Storage that Simply Runs and Runs: Infinidat Infinibox Delivers Incredible New Standard

Storage should be the most reliable thing in the data center, not the least. What data centers today need is enterprise storage that affordably delivers at least 7-9's of reliability, at scale. That's a goal of less than three seconds of anticipated unavailability per year - less than the reliability of most data centers.

Data availability is the key attribute enterprises need most to maximize their enterprise storage value, especially as data volumes grow into scales. Yet traditional enterprise storage solutions aren’t keeping pace with the growing need for greater than the oft-touted 5-9’s of storage reliability, instead deferring to layered on methods like additional replication copies, that can drive up latency and cost, or settling for cold tiering which zaps performance and reduces accessibility.

Within the array, as stored data volumes ramp up and disk capacities increase, RAID and related volume/LUN schemes begin to fall down due to longer and longer disk rebuild times that create large windows of vulnerability to unrecoverable data loss. Other vulnerabilities can arise from poor (or at best, default) array designs, software issues, and well-intentioned but often fatal human management and administration. Any new storage solution has to address all of these potential vulnerabilities.

In this report we will look at what we mean by 7-9’s exactly, and what’s really needed to provide 7-9’s of availability for storage. We’ll then examine how Infinidat in particular is delivering on that demanding requirement for those enterprises that require cost-effective enterprise storage at scale.

Publish date: 09/29/15

Converged IT Infrastructure’s Place in the Internet of Things

All of the trends leading towards the world-wide Internet of Things (IoT) – ubiquitous, embedded computing, mobile, organically distributed nodes, and far-flung networks tying them together - are also coming in full force into the IT data center. These solutions are taking the form of converged and hyperconverged modules of IT infrastructure. Organizations adopting such solutions gain from a simpler building-block way to architect and deploy IT, and forward-thinking vendors now have a unique opportunity to profit from subscription services that while delivering superior customer insight and support, also help build a trusted advisor relationship that promises an ongoing “win-win” scenario for both the client and the vendor.

There are many direct (e.g. revenue impacting) and indirect (e.g. customer satisfaction) benefits we mention in this report, but the key enabler to this opportunity is in establishing an IoT scale data analysis capability. Specifically, by approaching converged and hyperconverged solutions as an IoT “appliance”, and harvesting low-level component data on utilization, health, configuration, performance, availability, faults, and other end point metrics across the full worldwide customer base deployment of appliances, an IoT vendor can then analyze the resulting stream of data with great profit for both the vendor and each individual client. Top-notch analytics can feed support, drive product management, assure sales/account control, inform marketing, and even provide a revenue opportunity directly (e.g. offering a gold level of service to the end customer). 

An IoT data stream from a large pool of appliances is almost literally the definition of “big data” – non-stop machine data at large scale with tremendous variety (even within a single converged solution stack) – and operating and maintaining such a big data solution requires a significant amount of data wrangling, data science and ongoing maintenance to stay current. Unfortunately this means IT vendors looking to position IoT oriented solutions may have to invest a large amount of cash, staff and resources into building out and supporting such analytics. For many vendors, especially those with a varied or complex convergence solution portfolio or established as a channel partner building them from third-party reference architectures, these big data costs can be prohibitive. However, failing to provide these services may result in large friction selling and supporting converged solutions to clients now expecting to manage IT infrastructure as appliances.

In this report, we’ll look at the convergence and hyperconvergence appliance trend, and the increasing customer expectations for such solutions. In particular we’ll see how IT appliances in the market need to be treated as complete, commoditized products as ubiquitous and with the same end user expectations as emerging household IoT solutions. In this context, we’ll look at Glassbeam’s unique B2B SaaS SCALAR that converged and hyperconverged IT appliance vendors can immediately adopt to provide an IoT machine data analytic solution. We’ll see how Glassbeam can help differentiate amongst competing solutions, build a trusted client relationship, better manage and support clients, and even provide additional direct revenue opportunities.

Publish date: 08/18/15

The Promise of VM-Centric Storage and VVols: Tintri VMstore Delivers the Future Promise Now

The din surrounding VMware vSphere Virtual Volumes (VVols) is deafening. It started in 2011 when VMware announced the concept of VVols and the storage industry reacted with enthusiasm and culminated with its introduction as part of vSphere 6 release in April 2015. Viewed simply, VVols is an API that enables storage arrays that support the functionality to provision and manage storage at the granularity of a VM, rather than LUNs or Volumes or mount points, as they do today. Without question, VVols is an incredibly powerful concept and will fundamentally change the interaction between storage and VMs in a way not seen since the concept of server virtualization first came to market. No surprise then that each and every storage vendor in the market is feverishly trying to build in VVols support and competing on the superiority of their implementation.

Yet one storage player, Tintri, has been delivering products with VM-centric features for four years without the benefit of VVols. How can this be so? How could Tintri do this? And what does it mean for them now that VVols are here? To do justice to this question we will briefly look at what VVols are and how they work and then dive into how Tintri has delivered the benefits of VVols for several years. We will also look at what the buyer of Tintri gets today and how Tintri plans to integrate VVols. Read on…

Publish date: 06/26/15

Journey Towards Software Defined Data Center (SDDC)

While it has always been the case that IT must respond to increasing business demands, competitive requirements are forcing IT to do so with less. Less investment in new infrastructure and less staff to manage the increasing complexity of many enterprise solutions. And as the pace of business accelerates those demands include the ability to change services… quickly. Unfortunately, older technologies can require months, not minutes to implement non-trivial changes. Given these polarizing forces, the motivation for the Software Defined Data Center (SDDC) where services can be instantiated as needed, changed as workloads require, and retired when the need is gone, is easy to understand.

The vision of the SDDC promises the benefits needed to succeed: flexibility, efficiency, responsiveness, reliability and simplicity of operation… and does so, seemingly paradoxically, with substantial cost savings. The initial steps to the SDDC clearly come from server virtualization which provides many of the desired benefits. The fact that it is already deployed broadly and hosts between half and two-thirds of all server instances simply means that existing data centers have a strong base to build on. Of the three major pillars within the data center, the compute pillar is commonly understood to be furthest along through the benefits of server virtualization.

The key to gaining the lion’s share of the remaining benefits lies in addressing the storage pillar. This is required not only to reap the same advantages through storage virtualization that have become expected in the server world, but also to allow for greater adoption of server virtualization itself. The applications that so far have resisted migration to the hypervisor world have mostly done so because of storage issues. The next major step on the journey to the SDDC has to be to virtualize the entire storage tier and to move the data from isolated, hardware-bound silos where it currently resides into a flexible, modern, software-defined environment.

While the destination is relatively clear, how to move is key as a business cannot exist without its data. There can be no downtime or data loss. Furthermore, just as one doesn’t virtualize every server at once (unless one has the luxury of a green-field deployment and no existing infrastructure and workloads to worry about) one must be cognizant of the need for prioritized migration from the old into the new.  And finally, the cost required to move into the virtualized storage world is a major, if not the primary, consideration. Despite the business benefits to be derived, if one cannot leverage one’s existing infrastructure investments, it would be hard to justify a move to virtualized storage. Just to be sure, we believe virtualized storage is a prerequisite for Software Defined Storage, or SDS.

In this Technology Brief we will first look at the promise of the SDDC, then focus on SDS and the path to get there. We then look at IBM SAN Volume Controller (SVC), the granddaddy of storage virtualization. SVC initially came to market as a heterogeneous virtualization solution then was extended to homogeneous storage virtualization, as in the case of IBM Storwize family. It is now destined to play a much more holistic role for IBM as an important piece of the overall Spectrum Storage program.

Publish date: 06/17/15
Free Reports

Market Landscape Abstract: Survey of VVol Implementation by Various Storage Vendors

VMware Virtual Volumes (VVols) is one of the most important technologies that impacts how storage interacts with virtual machines. In April and May 2015, Taneja Group surveyed eleven storage vendors to understand how each was implementing VVols in their storage arrays. This survey consisted of 32 questions that explored what storage array features were exported to vSphere 6, how VMs were provisioned and managed. We were surprised at the level of differences and the variety of methods used to enable VVols. It was also clear from the analysis that underlying limitations of an array will limit what is achievable with VVols. However, it is also important to understand that there are many other aspects of a storage array that matter—the VVol implementation is but one major factor. And VVol implementation is a work in progress and this represents only the first pass.

We categorized these implementations in three levels: Type 1, 2 and 3, with Type 3 delivering the most sophisticated VVol benefits. The definitions of these three types is shown below, as is the summary of findings.

Most storage array vendors participated in our survey but a few chose not to, often due to the fact that they already delivered the most important benefits that VVols deliver, i.e. the ability to provision and manage storage at a VM-level, rather than at a LUN, volume or mount point level. In particular that list included the hyperconverged players, such as Nutanix and SimpliVity but also players like Tintri.

Publish date: 06/08/15
Page 1 of 44 pages  1 2 3 >  Last ›